Part Number Hot Search : 
500592 CXA1851 7022NAGZ 15101252 YED21 MAX66000 HVU362 LTC1475
Product Description
Full Text Search
 

To Download MAX3840ETJ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-1854; Rev 5; 9/07
+3.3V, 2.7Gbps Dual 2
General Description
The MAX3840 is a dual 2 2 asynchronous crosspoint switch for SDH/SONET DWDM and other high-speed data switching applications where serial data stream loop-through and protection channel switching are required. It is ideal for OC-48 systems with forward error correction. A high-bandwidth, fully differential signal path minimizes jitter accumulation, crosstalk, and signal skew. Each 2 2 crosspoint switch can fan out and/or multiplex up to 2.7Gbps data and 2.7GHz clock signals. All inputs and outputs are current mode logic (CML) compatible and easily adaptable to interface with an AC-coupled LVPECL signal. When not used, each CML output stage can be powered down with an enable control to conserve power. The typical power consumption is 460mW with all outputs enabled. The MAX3840 is compatible with the MAX3876 2.5Gbps clock and data recovery (CDR) circuit. The MAX3840 is available in a 32-pin exposed-pad QFN package (5mm 5mm footprint) and operates from a +3.3V supply over a temperature range of -40C to +85C.
2 Crosspoint Switch
Features
MAX3840
Single +3.3V Supply 460mW Power Consumption 2psRMS Random Jitter 7psP-P Deterministic Jitter Power-Down Feature for Deselected Outputs CML Inputs/Outputs 6ps Channel-to-Channel Skew 100ps Output Edge Speed 5mm 5mm 32 QFN or Thin QFN Package
Ordering Information
PART MAX3840ETJ+ MAX3840EGJ TEMP RANGE -40C to +85C -40C to +85C PINPACKAGE 32 TQFN 32 QFN PKG CODE T3255-3 G3255-1
________________________Applications
SDH/SONET and DWDM Transport Systems Add-Drop Multiplexers ATM Switch Cores WDM Cross-Connects High-Speed Backplanes
+Denotes a lead-free package.
Pin Configurations appear at end of data sheet.
Typical Application Circuit
VCC = +3.3V
MAX3866 TIA AND LA
MAX3876 CDR
DATA
MAX3869 LASER DRIVER
CLOCK
MAX3866 TIA AND LA
MAX3876 CDR
DATA
MAX3840 CROSSPOINT SWITCH
MAX3869 LASER DRIVER
CLOCK ZO = 50 TRANSMISSION LINE
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
+3.3V, 2.7Gbps Dual 2 MAX3840
ABSOLUTE MAXIMUM RATINGS
2 Crosspoint Switch
Supply Voltage, VCC .............................................-0.5V to +5.0V Input Voltage (CML) .........................(VCC - 1.0) to (VCC + 0.5V) TTL Control Input Voltage...........................-0.5V to (VCC + 0.5V) Output Currents (CML) .......................................................22mA Continuous Power Dissipation (TA = +85C) 32-Pin TQFN (derate 21.3mW/C above +85C) .................................1.38W
32-Pin QFN (derate 21.3mW/C above +85C) .................................1.38W Operating Temperature Range ...........................-40C to +85C Operating Junction Temperature Range ...........-55C to +150C Storage Temperature Range .............................-65C to +160C Lead Temperature (soldering, 10s) .................................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(VCC = +3.0V to +3.6V, TA = -40C to +85C. Typical values are at VCC = +3.3V, TA = +25C, unless otherwise noted.)
PARAMETER Supply Current CML Differential Output Swing Differential Output Impedance CML Output Common-Mode Voltage CML Single-Ended Input Voltage Range CML Differential Input Voltage Swing CML Single-Ended Input Impedance TTL SPECIFICATIONS TTL Input High Voltage TTL Input Low Voltage TTL Input High Current TTL Input Low Current VIH VIL IIH IIL -10 -10 2.0 0.8 +10 +10 V V A A VIS RL = 50 to VCC VCC - 0.8 300 42.5 50 SYMBOL ICC CONDITIONS All outputs enabled RL = 50 to VCC (Figure 2) 640 85 MIN TYP 140 800 100 VCC - 0.2 VCC + 0.5 2000 57.5 MAX 190 1000 115 UNITS mA mVP-P V V mVP-P
CML INPUT AND OUTPUT SPECIFICATIONS
2
_______________________________________________________________________________________
+3.3V, 2.7Gbps Dual 2
AC ELECTRICAL CHARACTERISTICS
2 Crosspoint Switch MAX3840
(VCC = +3.0V to +3.6V, TA = -40C to +85C. Typical values are at VCC = +3.3V, TA = +25C, unless otherwise noted.) (Note 1)
PARAMETER CML Input and Output Data Rate CML Input and Output Clock Rate CML Output Rise and Fall Time CML Output Random Jitter CML Output Deterministic Jitter CML Output Differential Skew CML Output Channel-toChannel Skew Propagation Delay from Inputto-Output CML Differential Output Swing for 2.7Gbps Input Data CML Differential Output Swing for 2.7GHz Input Clock tr, tf RJ DJ tskew1 tskew2 td RL = 50 to VCC (Note 4) RL = 50 to VCC (Note 5) 600 520 20% to 80% (Note 2) (Note 3) Any differential pair Any two outputs SYMBOL CONDITIONS MIN TYP 2.7 2.7 100 2 7 7 15 185 20 25 40 136 MAX UNITS Gbps GHz ps psRMS psP-P ps ps ps mVP-P mVP-P
Note 1: Note 2: Note 3: Note 4: Note 5:
AC characteristics are guaranteed by design and characterization. Measured with 100mVP-P noise (f 2MHz) on the power supply. Deterministic jitter (DJ) is the arithmetic sum of pattern-dependent jitter and pulse-width distortion. Measured with 300mVP-P differential 1010... data pattern driving the inputs. Measured with 300mVP-P differential clock at 2.7GHz driving the inputs.
_______________________________________________________________________________________
3
+3.3V, 2.7Gbps Dual 2 MAX3840
2 Crosspoint Switch
Typical Operating Characteristics
(VCC = +3.3V, TA = +25C, unless otherwise noted.)
SUPPLY CURRENT vs. TEMPERATURE
MAX3840 toc01
CML DIFFERENTIAL VOLTAGE
CML DIFFERENTIAL VOLTAGE (mVP-P) 750 700 650 600 550 500 450 400 350 300 250 200
MAX3840 toc02
160 4 OUTPUTS ENABLED 140 SUPPLY CURRENT (mA) 120 100 80 60 40 20 0 -50 -30 -10 10 50 30 TEMPERATURE (C) 70 3 OUTPUTS ENABLED 2 OUTPUTS ENABLED 1 OUTPUT ENABLED 0 OUTPUTS ENABLED
800
90
-50
-30
-10
10 50 30 TEMPERATURE (C)
70
90
2.7Gbps EYE DIAGRAM
INPUT = 223 - 1PRBS
MAX3840 toc03
CHANNEL-TO-CHANNEL SKEW vs. TEMPERATURE
18 16 14
MAX3840 toc04
20
150mV/div
TMIE (ps)
12 10 8 6 4 2 0 CHANNEL A -50 -30 -10 10 30 50 70 90 CHANNEL B
54ps/div
TEMPERATURE (C)
4
_______________________________________________________________________________________
+3.3V, 2.7Gbps Dual 2
2 Crosspoint Switch
Pin Description
MAX3840
PIN 1 2 3 4 5 6 7 8 9, 24 10, 13, 16, 17, 20, 23 11 12 14 15 18 19 21 22 25 26 27 28 29 30 31 32 EP
NAME ENB1 DIB1+ DIB1ENB0 SELB0 DIB0+ DIB0SELB1 GND VCC DOB0DOB0+ DOB1DOB1+ DOA1DOA1+ DOA0DOA0+ SELA1 DIA0+ DIA0SELA0 ENA0 DIA1+ DIA1ENA1 Exposed Pad
FUNCTION Channel B1 Output Enable, TTL Input. A TTL low input powers down B1 output stage. Channel B1 Positive Signal Input, CML Channel B1 Negative Signal Input, CML Channel B0 Output Enable, TTL Input. A TTL low input powers down B0 output stage. Channel B0 Output Select, TTL Input. See Table 1. Channel B0 Positive Signal Input, CML Channel B0 Negative Signal Input, CML Channel B1 Output Select, TTL Input. See Table 1. Supply Ground Positive Supply Channel B0 Negative Output, CML Channel B0 Positive Output, CML Channel B1 Negative Output, CML Channel B1 Positive Output, CML Channel A1 Negative Output, CML Channel A1 Positive Output, CML Channel A0 Negative Output, CML Channel A0 Positive Output, CML Channel A1 Output Select, TTL Input. See Table 1. Channel A0 Positive Signal Input, CML Channel A0 Negative Signal Input, CML Channel A0 Output Select, TTL Input. See Table 1. Channel A0 Output Enable, TTL Input. A TTL low input powers down A0 output stage. Channel A1 Positive Signal Input, CML Channel A1 Negative Signal Input, CML Channel A1 Output Enable, TTL Input. A TTL low input powers down A1 output stage. Ground. The exposed pad must be soldered to the circuit board ground for proper electrical and thermal operation.
_______________________________________________________________________________________
5
+3.3V, 2.7Gbps Dual 2 MAX3840
Table 1. Output Routing
ROUTING CONTROLS SELA0/SELB0 0 0 1 1 X SELA1/SELB1 0 1 0 1 X
2 Crosspoint Switch
OUTPUT CONTROLS ENA0/ENA1 ENB0/ENB1 1 1 1 1 0 1 1 1 1 0 DIA0/DIB0 DIA0/DIB0 DIA1/DIB1 DIA1/DIB1 Power Down
OUTPUT SIGNALS Signal at DOA0/DOB0 Signal at DOA1/DOB1 DIA0/DIB0 DIA1/DIB1 DIA0/DIB0 DIA1/DIB1 Power Down
DIA0+ DIA0-
CML
0 CML 1
DOA0+ DOA0ENA0 SELA0
CML+
500mV MAX
320mV MIN
0 DIA1+ DIA1CML CML 1
DOA1+ DOA1ENA1 SELA1
CML-
DIB0+ DIB0-
CML
0 CML 1
DOB0+ DOB0ENB0 SELB0
1000mV MAX 640mV MIN
0 DIB1+ DIB1CML CML 1
DOB1+ DOB1ENB1 SELB1
(CML+) - (CML-)
Figure 1. Functional Block Diagram
Figure 2. CML Output Levels
_______________ Detailed Description
The block diagram in Figure 1 shows the MAX3840 architecture. The SELA_ and SELB_ pins control the routing of the signals through the crosspoint switch. Each output of the crosspoint switch drives a CML output driver. Each of the outputs, DOA_ and DOB_, is enabled or disabled by the respective ENA_ and ENB_ pins.
CML Inputs and Outputs
CML is used to simplify high-speed interfacing. Onchip input and output terminations minimize the number of external components required while improving signal integrity. The CML output signal swing is small, resulting in lower power consumption. The internal 50 input and output terminations minimize reflections and eliminate the need for external terminations.
6
_______________________________________________________________________________________
+3.3V, 2.7Gbps Dual 2
Applications Information
Interfacing PECL Inputs and Outputs to the MAX3840
For information on interfacing with CML, refer to Maxim Application Note HFAN-01.0, Introduction to LVDS, PECL, and CML.
2 Crosspoint Switch
Layout Techniques
MAX3840
For best performance, use good high-frequency layout techniques, filter VCC supplies, and keep ground connections short. Use multiple vias where possible. Also, use controlled-impedance transmission lines to interface with the MAX3840 data inputs and outputs.
___________________ Interface Models
Figure 3 shows the interface model for the CML inputs, and Figure 4 shows the model for CML outputs.
VCC VCC
MAX3840
VCC
50 50 DIA0+ DOA050
VCC
DOA0+
50 DIA0-
MAX3840
Figure 3. CML Input Model
Figure 4. CML Output Model
_______________________________________________________________________________________
7
+3.3V, 2.7Gbps Dual 2 MAX3840
2 Crosspoint Switch
Pin Configurations
SELA0
SELA1
DOA0+
DIA1+
DIA0+
DOA0-
DOA1-
DIA1-
DIA0-
ENA1
ENA0
GND
VCC
VCC
32
31
30
29
28
27
26
25
24 24 23 22 21
GND VCC DOA0+ DOA0VCC DOA1+ DOA1VCC
23
22
21
20
19
18
17
VCC DOB1+ DOB1VCC DOB0+ DOB0VCC GND
ENB1 DIB1+ DIB1ENB0 SELB0 DIB0+ DIB0SELB1
1 2 3 4 5 6 7 8 10 11 12 13 14 15 16
VCC
TOP VIEW
DOA1+
TOP VIEW
SELA1 DIA0+ DIA0SELA0 ENA0 DIA1+ DIA1ENA1
25 26 27 28 29 30 31 32 + 1
ENB1
16 15 14 13
MAX3840
20 19 18 17
MAX3840
12 11 10 9
9
2
DIB1+
3
DIB1-
4
ENB0
5
SELB0
6
DIB0+
7
DIB0-
8
SELB1
DOB0-
DOB0+
DOB1-
DOB1+
GND
VCC
VCC
QFN
NOTE: THE EXPOSED PAD MUST BE SOLDERED TO THE SUPPLY GROUND.
VCC
THIN QFN
NOTE: THE EXPOSED PAD MUST BE SOLDERED TO THE SUPPLY GROUND.
Chip Information
TRANSISTOR COUNT: 1200 PROCESS: Bipolar (SiGe)
Package Information
For the latest package outline information, go to www.maxim-ic.com/packages.
PACKAGE TYPE 32 QFN 32 TQFN DOCUMENT NO. 21-0091 21-0140
Revision History
Rev 1; 11/01: Rev 2; 5/03: Rev 3; 5/05: Rev 4; 12/05: Rev 5; 9/07: Corrected specification. Added package code (page 1); updated package drawing (page 10). Added lead-free package (pages 1, 2, 8, 11, 12). Changed input voltage swing from 1.5VP-P (max) to 2.0VP-P (max). Added two AC amplitude specifications to increase test coverage for 2.5Gbps and 2.7GHz clock inputs (page 3); removed package drawings and added package table (page 8).
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX3840ETJ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X